Workgroup: The Interpeer Project

Published: 19 January 2026
Author: J. Finkhaeuser
Interpeer

Architecture for Human-Centric Networking

Abstract

This document follows on from [INTERPEER-REQUIREMENTS] to outline an architecture for a
future Internet that has all of the desired properties laid out in that sibling document.

The requirements are derived from a problem statement contained in [INTERPEER-PROBLEM-
STATEMENT].

About This Document

This document is a draft PIE and so adheres to the publishing process and naming described in
[PIE.f92£09.00].

* This version is published at PIE.f92f09.architecture
» The latest version can be found at PIE.f92f09.architecture-00

Contributing

Responsibility for this document lies with The Interpeer Project.

Source code for it can be found at https://codeberg.org/interpeer/draft-jfinkhaeuser-interpeer.
Additional coordination and discussion occurs on a mailing list:

» Address: interpeer@lists.interpeer.org
* Archive
* Membership management

Finkhaeuser Informational Page 1


https://specs.interpeer.org/PIE.f92f09.architecture
https://specs.interpeer.org/PIE.f92f09.architecture/PIE.f92f09.architecture-00
https://codeberg.org/interpeer/draft-jfinkhaeuser-interpeer
https://lists.interpeer.org/archives/list/interpeer@lists.interpeer.org/
https://lists.interpeer.org/mailman3/lists/interpeer.lists.interpeer.org/

Interpeer January 2026

Table of Contents

1. Introduction 3
2. Architecture 3
2.1. Desirable Properties 3
2.1.1. Performance 5
2.1.2. Avoidance of Single Points of Failure 6
2.1.3. Unlinkability 6
2.1.4. Quality of Service 6
2.1.5. Functional Layering 7
2.2. Elements
2.2.1. Users/Humans
2.2.2. Resources 10
2.2.3. Nodes & Convergence 11
2.3. Interactions 12
2.3.1. Resource Creation 14
2.3.2. Resource Consumption 14
2.3.3. Data 16
2.3.4. Custodianship Provision 16
2.3.5. Custodianship Offers 18
2.3.6. Custodianship Removal 18
2.3.7. Data Removal 19
2.4. Notes 19
2.4.1. Performance 19
2.4.2. Intermittency 20
2.4.3. Resources and Chunks 20
2.4.4. Multiple Convergence Layer Protocols 21
2.4.5. Pivot Point 21
2.4.6. Multiple Contributors 21
2.4.7. Self-Contained Resources 22

Finkhaeuser Informational Page 2



Interpeer January 2026

2.5. Analysis 22
3. IANA Considerations 25
4. References 25

4.1. Normative References 25

4.2. Informative References 26
Acknowledgments 27
Copyright Notice 27
Index 27
Author's Address 29

1. Introduction

This document describes a novel architecture for a future Internet, designed to better serve
human needs (human-centric) than the current Internet/Web architecture allows for.

The first part on desirable properties (Section 2.1) explores the properties from [INTERPEER-
REQUIREMENTS] again, focusing on how they can interact. Then, a discusssion of architecture
elements is undertaken in Section 2.2. The section on interactions (Section 2.3) focuses on how
distinct interactions in the system are considered. Further notes are provided in Section 2.4.

A final Section 2.5 analyses the proposed architecture according to the criteria derived from the
gap analysis.

2. Architecture

In [INTERPEER-REQUIREMENTS], desired properties of such an architecture are listed, and
existing architectures examined against that list. For the purposes of designing a novel
architecture, Section 2.1 reflects on how these properties can be grouped, or have overlapping
effects.

2.1. Desirable Properties

We reproduce the properties summary table from [INTERPEER-REQUIREMENTS] here to ease
referencing; refer to that document for more details and rationale.

Property Description
User-Perceived Low time to completion of queries, or "time to first Byte".
Performance

Finkhaeuser Informational Page 3



Property

Network Efficiency

Scalability
Simplicity
Evolvability
Extensibility
Customizability
Reusability
Resilience

High Intermittency
Tolerance

Low Intermittency
Utiliziation

High Latency Tolerance
Low Latency Support

Low Reliability
Tolerance

High Reliability Support

High Throughput
Support

Inconsequential
Throughput Tolerance

Integrity
Authenticity
Confidentiality

Security

Finkhaeuser

Interpeer January 2026

Description

The most efficient thing is to not use the network and use cached
data.

The architecture supports a large number of components.

From the systems theory definition, avoid complexity.

Be able to change a system component without affecting the rest.
Be able to add new functions safely.

Allow clients to influence system behaviour to their needs.

Be able to re-use components in the system.

Be able to deal with (partial) failure of components.

Be able to support applications in dealing with high
intermittency.

Be able to utilize low intermittency underlays.

Be able to support applications in dealing with high latency.
Be able to support applications that require low latency.

Be able to support applications in dealing with low reliability.

Be able to support applications that require high reliability.

Applications that need to move a lot of data should be able to do
s0.

It should be possible to prioritize the needs of high throughput
applications against the needs of applications for which
throughput is less of a concern.

Verify and assure integirty of the payload.
Ensure that data comes from the source it claims.
Prevent data from being shared without consent.

Follow security considerations of [BCP72].

Informational Page 4



Property

Privacy

Anonymity
Pseudonymity
Unlinkability
Consorship Resistance
Accessibility

Mobility

Multi-Homing

Self-Determination

Interest Grouping

Interpeer January 2026

Description

Protect privacy (see also [RFC6973], Section 7).

Allow anonymous use.

Where anonymous use is impossible, allow pseudonymous use.
Prevent linkability of multiple pseudonymous activities.

Avoid choke points at which censorship can be enacted.
Provide an enabling environment for all.

Tolerate changes in connectivity (network attachment).

Tolerate and be able to utilize multiple points of connectivity/
network attachment.

Permit components to make local decisions.

Support components in communicating with other components
with related interests.

Table 1: Properties of a Human-Centric Architecture

Quite a few of these properties either are related, or can be treated as a group in certain contexts.
In this section, we'll discuss some such grouping, in order to ease some more specific discussion

later in this document.

2.1.1. Performance

In the properties section of [[NTERPEER-REQUIREMENTS], a combined "Performance" property
was further split into individual properties listed separately in the table above.

It should be clear that User-Perceived Performance can be significantly enhanced by ensuring low
latency and high throughput, for example.

For the design of a protocol more than an architecture, it is worth considering how much
meaningful data can be sent in the initial network packet(s). This consideration includes
reducing the amount of optional data in packets, which can also help achieve lower latency
when fragmented packets are reassembled -- simply because fewer fragments may exist.

From an architecture perspective, it may be able to synthesize a requirement for low packet
overhead from this, as well as a requirement for prioritizing data within a data stream.

Finkhaeuser

Informational Page 5


https://rfc-editor.org/rfc/rfc6973#section-7

Interpeer January 2026

2.1.2. Avoidance of Single Points of Failure

Several properties relate directly or indirectly to the avoidance of single points of failure. The
most explicit one is Resilience, of course -- but it bears highlighting that Interest Grouping can also
be viewed as such a property.

If communication flows from an interested node to multiple nodes purporting to share this
interest, any of these nodes could potentially reply to queries, and responses from any of them
can be treated as equivalent. This directly supports Censorship Resistance as well.

This may also support Evolvability, in that individual nodes can perhaps be upgraded others
provide service stability.

2.1.3. Unlinkability

If multiple interactions are unlinkable, the implication is that each interaction is either
anonymous, or that distinct interactions are pseudonymous with unlinkable identifiers.

It is worth stressing that HRPC considerations from which these properties are derived are
mostly concerned with the anonymity of humans. This implies that Unlinkability is
predominantly concerned with the inability to link multiple interactions to the same person or
persons.

Nonetheless, any identifier used throughout the system should follow the same considerations, as
to avoid the discovery of links in elaborate metadata analysis.

Identifiers should ideally not reveal anything about what is being identified, and ephemeral
identifiers should be used whenever such a use is possible without undue impact on other
properties.

2.1.4. Quality of Service

A fair few properties essentially describe what can be grouped together as Quality of Service
(QoS)-parameters, which include the distinct properties related to intermittency, latency,
throughput and reliability.

The Customizability property essentially suggests -- at least when limited to these parameters --
that clients be able to specify their requirements in appropriate QoS flags. At the same time, Self-
Determination implies that other nodes may desire to make decisions that do not respect such
QoS flags.

An architecture can never control how remote nodes act. Explicitly mentioning Self-
Determination is perhaps not necessary under this consideration. That being said, QoS can never
be achieved if nodes behave arbitrarily.

Finkhaeuser Informational Page 6



Interpeer January 2026

The meaningful way out of this dilemma can be summarized by the Russian proverb "trust, but
verify". Clients SHOULD trust that their QoS parameters are being honoured, but are best advised
to also verify that this trust is not misplaced. Similarly, nodes acting as servers SHOULD trust the
QoS parameters are not chosen arbitrarily and strive to meet them, but are advised to verify
whether this has undesirable local effects (such as e.g. assigning all resources to one client).

All of the above is not particularly surprising, and follows engineering best practices in
distributed systems.

However, the inverse is perhaps more interesting to state clearly: it does not make a whole lot of
sense to assume QoS negotations are anything but informational.

Here, Interest Grouping can help again. Assume for the moment that a request to a group, an
expression of an interest, is paired with QoS requirements. Further assume that all other group
members respond with their QoS promises (it would be inadvisable to call them "guarantees").

This would permit a client to fall back on less stringent requirements if no peer can match the
strict ones, if the application can support it. This fulfils Self-Determination both of the client, as
well as of each individual responder.

Evolvability prohibits an architecture prescribing this behaviour, but implementations SHOULD
describe the rationale behind the decision of any such strategies they implement here.

2.1.5. Functional Layering

There are several functional layers into which properties can be loosely grouped, with some
properties making sense at multiple layers.

1. Extensibility, Simplicity, and Confidentiality, amongst others, are all eased if a distinction is
made between payload and protocol. That is, if a protocol provides primitives for
confidentially transporting extensible payloads, it is immediately simpler than if it itself
contains extensibility mechanisms.

This, at least, is true with regards to choices made by applications -- at the same time, it may
not hurt to have an extensibility mechanism in the protocol. It is generally better to design
an extensible protocol and make the predefined functions work within that extensibility
mechanism, than try to add extensibility at a later stage.

2. Properties relating to QoS may depend on the properties of underlay networks. As such, a
distinction between a "protocol logic" layer and transports that utilize underlays may
increase Simplicity, but also Evolvability, as well as help fulfil those QoS requests.

3. A "protocol logic" layer should then contain the management of underlays according to QoS
parameters, the ability to deal with Multi-Homing and Mobility, and provide primitives for
an upper layer to ease dealing with Integrity, Authenticity, and other properties of a nature
more related to human needs.

We will re-visit this grouping in more detail later.

Finkhaeuser Informational Page 7



Interpeer January 2026

2.2. Elements

In order for a novel architecture that shows all of the properties described in [INTERPEER-
REQUIREMENTS], it must be designed in a human centric fashion. This encompasses human-to-
human interactions, yes -- but in a computer network, each human actor is represented by one or
more entities.

We will term these entities "resources"”; a "resource" by this definition is very broadly defined as
anything humans may be interested in that the computer network can represent, whether other
humans or digital objects of some kind.

We can thus model a new architecture around the expected human-to-resource interactions.
REST, ICN and DTN all contain the notion of resources, albeit not necessarily in the same form.
IP's abstraction is that of an interface to which an IP address is bound -- but looking a little higher
in the stack, we can find that both TCP and UDP define services as the main abstraction via the
assignment of services to ports.

The recursive architectures described in the gap analysis do not offer any new forms of
interaction, but rather employ a different view on layering and therefore do not require special
consideration here.

Architecture Name Access method

Internet Service/Port Bi-directional packet exchange

REST Resource Request/Response

ICN Content, Data  Interest/Data (similar to REST)

DTN Endpoint Bi-directional message exchange

Robotics Topic Publish/Subscribe, Request/Response, Action/Status/Result

Table 2: Resource Equivalents in the examined architectures

We note that these methods fall into two categories: the bi-directional exchange category is very
general purpose; it does not define in which direction there is more data flow between
endpoints. It is similarly not too well defined which endpoint initiates contact.

By contrast, the more request/response oriented methods clearly, if perhaps implicitly, define the
role of a resource consumer who initiates a transmission, an a resource holder, who responds. In
fact, resource creation is left largely undefined in ICN, and left incomplete in REST. The main
advantage of this method is that it permits, at least in principle, removing the resource location
from the equation, which induces increased network efficiency due to caching, etc.

Finkhaeuser Informational Page 8



Interpeer January 2026

Noteworthy is also that the request/response method maps fairly neatly to the document web use
case, while the bi-directional exchange maps well to the real-time use case. The API use case can
be fulfilled by either mode; many APIs follow a request/response pattern, but callback or
notification patterns require bi-directionality.

The clear implication is that a new abstraction must provide both categories of access method.
This abstraction must also be the central pivot point for the architecture, tightly coupled to the
user interactions it affords.

Finally, robotic's Action/Status/Result interaction is novel in this architecture. But it is
conceptually similar to a combination of Request/Response, with an implicit Publish/Subscribe
mechanic with a well-defined end.

2.2.1. Users/Humans

Users must be represented in the system somehow, which means they need to be identified.
Identification can rub up against HRPC properties, so it should be highlighted that identifiers
under this architecture must be pseudonymous.

It must additionally be possible to create many ephemeral identifiers, in order to provide for
unlinkability. If ephemeral identifiers are indistinguishable from other identifiers, this enables a
quasi anonymous mode of interaction, as a random identifier reveals as little identifiable
information as an absence of an identifier, provided that they remain unlinkable (see also
Section 2.1.3).

The HRPC guidelines acknowledge that some rights are difficult to meet when others are fully
embraced. For example, the right to remedy can be difficult to enforce when full anonymity is
given to users in a system.

The solution we choose to this dilemma is to leave it to the specific application how much a user
identifier can be traced to a person's real world identity. Using a lot of different ephemeral
identifiers will provide more in the way of anonymity, though at the expense of remedy -- and
conversely, permanent identifiers would provide zero anonymity and unlinkability, but help
with full remedy:.

In order to permit both, however, user identifiers must NOT contain, and so leak any information
to an observer that would indicate the level of permanence the identifier enjoys. Instead the
system must treat all identifiers equally, and must presume they are fully ephemeral, and exist
solely for the duration of (a part of) some session.

Furthermore, identifiers must be related to some asymmetric cryptographic key pair. A typical
such relationship would be for the identifier to either be a public key (such as e.g. in elliptic
curves of [RFC8410], [RFC8032]), or be a key fingerprint, i.e. a hash over some public key for RSA
or DSA keys ([NIST.FIPS.186-4]). Establishing this relationship means that it can be verified that
e.g. a cryptographic signature is issued by the entity identified via a matching identifier; which in
turn induces or helps incude the remainder of the HRPC properties.

Finkhaeuser Informational Page 9



Interpeer January 2026

2.2.1.1. Creators
Creators of a resource (Section 2.2.2) are those identities that generate a resource identifier.

Creators also own the resource. While many other participants can contribute (Section 2.2.1.3),
the creator determines whether such contributions are authorized by adding other contributors
to the resource.

If designed appropriately, this induces part of the Confidentiality property, in that resource
creators ultimately control resource usage.

2.2.1.2. Consumers

Consumers of a resource request and process a resource. This requires read-only access to
resources.

2.2.1.3. Contributors

Contributors to a resource are verifiable authors of a part of a resource, i.e. they have provided
some signature or other means of verification that this resource part is authored by them.

The creator of a resource is a contributor, at least of the initial resource part. Other contributors
are not creators.

Conceptually, contributors to a resource require write access to it. It is very likely that
contributres also have read access in order to contribute meaningfully, but it should be noted
that this is not strictly speaking necessary.

2.2.2. Resources

As alluded to above, we define a resource as an element in the network architecture that
provides some utility to humans interacting with the system. Just as in REST, "any information
that can be named can be a resource: a document or image, a temporal service (e.g. today's
weather in Los Angeles), a collection of other resources, a non-virtual object (e.g. a person), and
so on."

A resource is distinct from an ICN content chunk, because it is not bounded to any particular size
(as e.g. chunks may be). If the resource is data, this implies that the data can grow and mutate
over the lifetime of the resource. This induces REST's modifiability properties.

A resource is distinct from an IP service and from a REST resource, because it is location
independent. A resource is distinct from an IP service also because it may persist beyond the
lifetime of a service port. This induces the mobility and multi-homing properties, and both of the
reliability properties. It also helps with some performance properties.

A resource is distinct from a DTN endpoint because it does not only name a destination for
messaging, but may have other meanings (see above). This induces other modifiability
properties, but may also include also portability.

Finkhaeuser Informational Page 10



Interpeer January 2026

A resource, in other words, is a data stream that may be transmitted efficiently, and has a
purpose -- and this purpose must be embedded into the resource, or not all of the above
properties can be fulfilled.

In order to retain these properties, a resource MUST also be self-contained. The moment
additional metadata needs to be managed for a resource, such as a manifest, or ownership
information, etc. the architecture introduces a dependency on a different element which can fail
or be unreachable -- and so undermine the reliability and intermittency related properties in the
worst case.

This also implies that a resource needs to be verifiable in itself, and so requires a method such as
cryptographic signatures to be added.

For public resources, this is sufficient. But for modelling user-to-user interactions, not all
resources can reasonably be public. Therefore, end-to-end content encryption also must be
supported.

2.2.2.1. Resource Permance

ICN assumes that resources are data. Much the same applies to REST, at least insofar as various
REST methods are used to create, update or retrieve resources.

REST also treats data sent in this manner as representational, which is the foundation for
modelling resources that do not, themselves, consists of data, but that provide some kind of
service.

The primary distinction, however, is not between whether a resource represents data or a
service, but whether it can be considered somewhat permanent.

A resource with permanence can be cached, perhaps archived. If archived, it can be retrieved
again at a later date. An impermanent resource is ephemeral, and exists only for a single
interaction.

Interactions can be arbitrarily long, however. Consider a chat room as an example. The room
persists, even if individual conversation topics within are of little interest some time later.

Resource permanence is a topic worth further consideration. From an architectural point of
view, however, this is the only distinction between various resource "types" that should have an
impact on other architectural considerations.

2.2.3. Nodes & Convergence

In order to provide mobility, multi-homing, improve reliability and deal with intermittency to
varying degrees, we consider communications to occur between nodes, not between any
particular network interfaces. We borrow a page from the DTN approach and indeed treat the
architecture as able to function with arbitrary convergence layer protocols that transport the
protocol messages we will discuss below.

Finkhaeuser Informational Page 11



Interpeer January 2026

In fact, it is likely that each node in the network should be addressable via multiple convergence
protocols simultaneously. If the convergence protocol is e.g. IP based, this directly enables
mobility, as node addressing can remain static even as attachment points to the IP network
change.

One consequence of this approach is that nodes require addresses independent of the
convergence layer. Additionally, there exists a many-to-many relationship between nodes and
users -- a system may cater to multiple concurrent users, but at the same time, users may
simultaneously use multiple devices, each with their own network attachment points.

For this to work, each convergence layer must provide more than a transport means, but rather
also provide a means for managing the mapping of a node address to the convergence layer's
own addressing scheme. Unlike in DTN, this architecture assumes that such mapping is highly
dynamic (DTN is relatively agnostic here). The specification of such mechanisms is outside of this
document's scope; however, in principle any mechanism such as the Domain Name System
([RFC1035] and its many extensions and updates) or more novel approaches such as Routing On
Service Addresses (ROSA, [I-D.draft-trossen-rtgwg-rosa-arch]) can be used.

Note that as in the recursive architectures, the same protocol may be used for mapping and
resolving node addresses to convergence layer addresses, and for mapping user idenitifiers to
node addresses. Such re-use is not mandatory, but should be considered.

This architecture, however, defines more requirements on the convergence layer below.

2.2.3.1. Custodians vs. Caches
Any node that has custody of (parts of) a resource is a custodian of that part.

Note that this definition excludes nodes that merely cache a data resource. In contrast to a cache,
a custodian is charged with continued storage of the (parts of the) resource they manage. Caches
merely provide best effort storage.

By this definition, it is deliberately and explicitly possible for multiple nodes to have
custodianship of a resource at any time.

2.3. Interactions

Defining the elements of this architecture is the easier task. There is a strong distinction made
between the human as represented by a user identity, and the network node. Another distinction
is made between the node and its convergence layer protocols. Finally, a relationship -- in the
abstract -- between users and resources in the form of cryptographic signatures is established.

We can now elaborate the interactions users have with resources, and examine how this may
related to network nodes.

We have already explored how ICN and REST vs. the Internet and DTN model different access
patterns. In particular, one group is more heavily focused on resource consumption, while the
other on bi-directional messaging.

Finkhaeuser Informational Page 12



Interpeer January 2026

We have to observe that neither fully describes the user-to-user interactions we see either on the
Internet, or in fact in the physical world. While it is common enough for people to have personal
conversations with other folk, a lot of our time we spend speaking to and collaborating in groups.

Rather than treat groups as a special case of interaction, one should consider that a pair of
people are still a group, albeit a very small one. In fact, one-to-one communications should be
considered the special case, while group communcations must be the general case, if we are to
model human needs well in the digital realm.

Within group communications, we can identify the speaker role and the listener role. It is by no
means given that there is only one speaker, and only one listener at any given time. In fact, the
roles constantly shift back and forth (some people claim they can speak and listen
simultaneously, but the data on that is apocryphal at best).

Neither are groups static; members constantly get added or leave. Finally, individuals can be in
multiple groups simultaneously.

With so much in flux, this makes it hard to pinpoint exactly how to define a group. The response,
in most any digital system, is that groups are "things" that can be created, and that provide
affordance for the management and self- management of its members, and relay messages
between members.

Now that we have this group "thing" described, should we add a new element to the
architecture?

It turns out, that is not necessary. We can simply define a group as the set of users currently
concerned with a particular resource.

This has two major implications.

The first, and simpler one is that the convergence layer protocols really must provide group
communications, and their respective method for mapping node identifiers to convergence layer
addresses is really an exercise in group membership management.

One obvious way in which this can be provided is via IP multicast, e.g. by mapping a resource
identifier to a multicast address in some way. But as we will see later, this approach could be a
little too naive.

The second implication is because resources must be self-contained: this means also that group
membership -- at the level of user identifiers, not at the level of node identifiers -- must be
contained within the resource, and by extension such related information as permissions.

It must be, because if it were not, then we would again introduce a dependency of the resource
on other elements (nodes, extra metadata) which provides challenges for fulfilling the desired
architectural properties.

Finkhaeuser Informational Page 13



Interpeer January 2026

Note also that this treatment of a group as a set of users concerned with a resource has a clear
correspondence with the Publish/Subscribe mechanism described in the Robotics application.
Notably, the "resource" here can be viewed as roughly equivalent as the topic to which nodes
subscribe or publish to.

2.3.1. Resource Creation

Resources, like communication groups, must be created. In the process of creation, a creator user
provides an identifier for the resource, as well as information on the intended usage of the
resource.

If we wish to maintain the property of customizability, then the end-to-end principle must be
redefined. We no longer treat this as relating to network endpoints (nodes), but rather to the
principal elements of users and resources.

Specifically, we establish two separate processes: the first is a user-to-resource process, in which
the creator of a resource documents their intent. This is not fundamentally different from e.g.
choosing a TCP address and port. The choice of TCP as a protocol documents a streaming intent,
and the port typically correlates to a service protocol which defines how higher layer
interactions are to occur.

The key difference is that in this architecture, this intent is not an ephemeral state of a single
machine, but rather a permanent feature of the resource itself.

This creation cannot be advertised to the group, because prior to the existence of the resource,
no resource specific group can exist. This appears to introduce a chicken-and-egg problem, which
we will resolve later.

2.3.2. Resource Consumption

Resource consumption works quite similar to how it does in ICN: a consumer user posts an
interest in a resource to its neighbouring nodes.

The interest specifies not only the resource identifier, but also the user identifier that expresses
an interest. It may furthermore provide one or more node identifiers as routing information, and
could even contain current convergence layer addresses for these nodes.

Recipients of an interest have have no obligation to store this interest as in ICN. They can
respond in one of several ways.

1. If they have custodianship of the resource, they can decide whether to add the interested
user to the resource group or not.

2. If they know or suspect nodes that may have custodianship, they can forward the interest to
that node. If so, they should add the originating node identifier to the interest (if none is
present), as well as the convergence layer address by which the interest was received.

3. If they are neither custodians nor can locate a custodian of the resource, they should return
an error response to the interested consumer.

Finkhaeuser Informational Page 14



Interpeer January 2026

Adding a user to the resource group is a multi-step process.

1. First, custodians needs to check whether the user can join the group as a consumer.

2. If that is permitted, the resource data itself is updated to record that the user is now part of
the resource group (this step may be omitted for public resources). This may mean
distributing additional resource data within the resource group.

3. The custodian now signs the interest, and repeats it to the resource group. Depending on the
convergence layer, this can result in several communication packets being sent along
different channels.

Whether or not the custodian does permit this joining of a user to a resource or resource group
can depend on many different factors. The custodian may be the node that currently hosts the
creator of the resource; in this case, the creator can be explicitly asked to consent to this request.

Or the creator can have already added the user identifier to the resource; in that case, only the
convergence layer operations for joining the resource group must be performed.

It's also worth highlighting that in principle it is possible to deterministically map a resource
identifier to an IP multicast address, e.g. via an ORCHID v2 ([RFC7343]) or similar process. In that
case, the interest can be posted directly to the resource group, and no routing of the interest to a
more likely destination has to occur.

The key point here is not that all of the above steps have to be performed in precisely this order -
but rather that at the end of a successful initiation of consumption, the user identifier is recorded
in the resource, and a matching node identifier has joined the convergence layer(s) groups.

In order to satisfy all of the use cases outlined above, an additional thing needs to happen: just
like the resource creator needs to record intended usage into the resource, a consumption
interest needs to specify desired usage. This can provide the second process, the resource-to-user
negotation whether this desired usage matches the creator's intent.

This provides more information to the custodian node to decide whether joining the resource
group is feasible. For example, when the consumer desires some bi-directional communications,
and the creator just names some static data, that effectively represents a failed user-to-user
negotation of the communications parameters.

Interests must also contain one or more of the following pieces of information:

* On the one hand, it is likely that a resource is in some way chunked up for better transport,
even if it must be self-contained. An interest could be expressed for a (set of) particular
content chunk(s) for the resource.

* Alternatively, the interest could be in the entire resource, which implies a subscription to
updates to the resource -- either from the origin chunk, or from some chunk position
specified in the interest.

Finkhaeuser Informational Page 15



Interpeer January 2026

At any rate, and unlike ICN, either of the above means that an interest can yield more than a
single response. For this reason, nodes sending an interest must choose an identifier -- a cookie --
for the interest, which responses must contain. In this way, a single interest can be responded to
multiple times.

For this to be manageable, interests must also contain a time stamp until which the interest is
valid. Custodians must not respond to a timed out interest. Note that timeout of an interest, does
not automatically imply timing out of group membership.

2.3.3. Data

Caches of a resource must ignore unsigned interests. Interests signed by a custodian of the
resource must be responded to by sending data according to the interest, if the cache contains
such data. Data responses must contain the interest cookie.

Care must be taken how to send data responses. While it is safe to assume that all members of a
resource group share some interest in a resource, it is not a given that all the interests are
equivalent.

Consider a video broadcast -- it is quite likely that when a user intends to join a broadcast, they
wish to do so at the current time point. But perhaps they also wish to catch up with what has
already been sent. Both are subscription interests, but they specify different starting content
chunks (or perhaps none, in the case of the current time point).

To stay with the IP multicast example, it would not make sense to flood the multicast group with
data some of the members would discard. For this convergence layer, it may be best to maintain
multiple resource related groups -- one for sending interests to caches, perhaps, and one for each
group of nodes that wish to consume the resource from (roughly) the same offset.

In other words, convergence layers require significant knowledge of the interest that data is sent
in response to. Conversely, it is infeasible to suggest that data is sent to the entire resource group
all the time.

Instead, data is sent to the convergence layer group(s) that this layer determines is best suited for
the interest(s) at hand.

A few comments should be made on the distinction of custodians, caches, creators and
contributors at this point.

Any node that hosts a creator or contributor acts as a cache, at least of the resource chunks that
this user has created. Such nodes may also be full custodians. The key characteristic for the
purposes of this section, however, is that they store some data, and can therefore send it in
response to an interest, i.e. act as a cache.

2.3.4. Custodianship Provision

Where the previous sections have somewhat glibly assumed that the consumer and creator of a
resource share some means to find each other, be they part of an IP multicast convergence layer
group that can be derived from a resource identifier, or by some other means.

Finkhaeuser Informational Page 16



Interpeer January 2026

In order to provide the high intermittency tolerance property first and foremost, custodianship
cannot merely lie in the node that happens to host the resource creator. At the same time, the
mobility property requires that the network is not statically designed, but that nodes can be
flexible in providing custodianship - a static network design of custodians may not suffice here.

In order to find custodians, creators must send a custodianship request to neighbouring nodes.
Again, what this notion of "neighbouring" entails is dependent on the convergence layer.

Nodes can respond in one or all of the following ways:

1. Generating a custodianship offer response to indicate that they wish to become custodians of
the resource.

2. Forward a previously received offer of possible custodianship from another node.
3. Forward the custodianship request to other nodes it knows.

The specifics of the custodianship request and response are outside of the scope of this
architecture.

A physically highly reglemented network may provide custodianship only from nodes operating
on a specific converge layer protocol address. A logically highly reglemented network may
provide custodianship only from nodes who can prove they are designated custodians by
providing a signature of that fact from some mutually recognized authority. Other networks may
provide more flexible custodianship.

A custodian node has two tasks:

1. First, it must permanently store any parts of the resource it receives. It may decide that it can
best serve its purpose by also becoming a consumer of the resource in general, so that it
accumulates all of the resource eventually. Note that a request for custodianship may
request this behaviour explicitly.

2. Second, it must act on behalf of the resource owner to the best of its ability. As such, it may
decide to permit consumers or contributors to join the resource.

In order to perform this job, authorization information that can ultimately be traced back to the

creator must be embedded into the resource. For example, a resource may contain a section that
explicitly marks a user identifier as a contributor or consumer. Or it may record other custodian

nodes in the resource. It may delegate the ability to name other custodians to a particular (set of)
custodians.

When a creator or authorized custodian accepts an offer; a custodianship acceptance response is
sent to the newly inaugurated custodian. The same or equivalent may be sent to the resource
group, and/or stored in the resource itself.

Custodianship, unlike group membership, is not technically a property of the resource itself.
However, as the resource is shared amongst all group members in some way, recording primary
custodians in the resource may be a convenient choice.

Finkhaeuser Informational Page 17



Interpeer January 2026

2.3.5. Custodianship Offers

Custodianship offers are generally the response to a custodianship request. Since custodianship
requests pertain to an identified resource, the offer should typically also contain the same
resource identifier.

It is also possible for nodes to spontaneously send custodianship offers for unspecified resources,
to indicate capacity. Receiving nodes must store these offers, and respond with them as described
in Section 2.3.4.

Offers are not permanent; they must be equipped with a lifetime. After an offer expires, nodes
should discard them.

Note that there is no particular requirement for nodes to keep offers for a specific duration, or to
keep all offers it receives; nodes can apply local policies here, including flood and DDoS
protection policies, etc.

The main purpose of spontaneous offers is to pre-populate offer tables in nodes so that finding a
suitable custodian can be accelerated. An implementation which forwards custodianship
requests is equally viable.

Note that the above formulation of custodianship requests and responses makes it compatible
with a large variety of convergence layer mechanisms.

In a local area network, for example, nodes may periodically broadcast spontaneous
custodianship offers on the data link layer. Conversely, the criteria for custodianship selection
are just wide enough to also e.g. permit mapping this mechanism onto a distributed hash table
such as described in [KADEMLIA].

2.3.6. Custodianship Removal

Removal of custodianship effectively demotes a custodian to a mere cache. It is primarily
information that needs to be communicated to the resource group, and so could be embedded
into the resource.

In order to prevent situations in which custodianship is repeatedly accepted and removed by
competing parties, we define that custodianship can only be removed by the party that accepted
it, or by any party higher in the authority chain.

To illustrate this, assume that creator A delegated selection of custodianship to contributors B
and C. B selects a custodian node CN.

Now contributer C cannot remove CN as a custodian. Contributor B could, or creator A could,
because A initially delegated custodianship selection.

Finkhaeuser Informational Page 18



Interpeer January 2026

2.3.7. Data Removal

Data removal in a distributed system is difficult to guarantee. The preferred mechanism e.g. in
ICN is to provide end-to-end encrypted data only, and then lose the encryption key, making data
unrecoverable, which is similar in effect.

This mechanism is sound enough, but suffers from a data race. If a decryption key has leaked
before legitimate nodes forgot it, the data remains accessible. Worse, it only remains accessible
to illegitimate nodes.

Implementations are strongly encouraged to find complementary means to ensure data deletion.
Some are discussed below.

1. In ICN, where resource chunks are addressed via a hash of their content, they are effectively
immutable as any mutation creates a new content hash identifier, and so a distinct chunk.

If resource chunks are mutable, on the other hand, zeroing out data is as valid a mutation as
writing any other data, and so can help protecting plain text data (either in public resources,
or the plain text prior to encryption).

2. Creators may send explicit deletion requests to caches and/or custodians.

A conforming implementation SHOULD provide as many of these complementary methods as
feasibly to best provide data protection, but MUST provide at least the above three -- unless some
future revision of this document obsoletes them.

2.4. Notes

A number of notes apply to this architecture which are not easily expressed either as elements or
interactions.

2.4.1. Performance

Several of the desired properties can only be achieved by selecting an appropriate convergence
layer protocol for the combination of the creator and consumer intents.

Assuming that the two parties wish to engange in a video call; the resource may then represent
the call session. This is a high throughput, low latency scenario with bi-directional messaging. A
choice of BP as a convergence layer protocol may not yield the desired results here, due to it's
design of dealing primarily with high intermittency.

Conversely, a creator may create a live video stream, but a consumer may not care at all to watch
it as it is being created. They may merely wish to record it for later consumption. Here, even
though the creator's intent is similar to the above scenario, the consumer's intent relaxes the
requirements and can make BP a more viable choice.

Finkhaeuser Informational Page 19



Interpeer January 2026

The key thing to stress is that it is the combination of the creator's intent (as embedded in the
resource origin) and the consumer's intent that makes for the best choice of convergence layer
protocol, and implementations MUST take this into consideration when choosing from available
protocols.

It follows, then, that resources SHOULD encode such parameters, and nodes SHOULD compare
these to their own capabilities and requirements.

Additionally, implementations MUST provide such convergence layer protocols as necessary to
induce all of the desired properties in order to be considered a full implementation of this
architecture.

2.4.2. Intermittency

The explicit custodianship mechanism described above is different from the one in DTN, in that it
applies to storing and making available of a resource rather than to taking care of forwarding a
message.

One implication is that the end-to-end principle is not violated by the contributor discarding a
resource chunk after a custodian has received it.

The main distinction to DTN here is that in DTN, the sender of a message is still part of the
communications flow. Moving the effective endpoint to a custodian which can then fail leaves
little means for notifying the sender, and allowing it to find a contingency solution.

In this architecture, because resources are self-contained, once a contributor has transferred
custody of a resource chunk, it is -- conceptually -- no longer involved in how the resource is
being accessed; the end-to-end scenario is ended. When a consumer accesses a resource, a new
end-to-end scenario is established.

That said, in order to achieve intermittency mitigation akin to DTN, custodians MUST explicitly
acknowledge the receipt of all data. Such recepts should be made at the granularity of resource
chunks, however, not at the data packet or message granularity of TCP vs. DTN.

2.4.3. Resources and Chunks

The above deliberately avoids being too detailed about how resources or their respective chunks
may be identified. Interests can be in an entire resource, however, or in an individual chunk. It
follows that these identifiers may occupy a shared namespace -- but no such requirement is
imposed here.

It is worth emphasizing that the notion that a resource is subdivided into chunks is not
necessarily given. A resource may consist soley of a single mutable chunk -- if so, then why
distinguish between the chunk and resource?

Rather, the distinction is explicitly made so that implementations consider the ramifications of
how resources should be represented.

Finkhaeuser Informational Page 20



Interpeer January 2026

One point to stress again is that resources MUST be self-contained. That is, information on which
chunk(s) appear in the resource in which order must be embedded into the resource itself. Only
then can we guarantee that no dependencies on additional architecture elements are introduced.

2.4.4. Multiple Convergence Layer Protocols

Each node may not only provide multiple convergence layer protocols, but may also use them
simultaneously for a single resource. This implies the existence of a messaging abstraction in
implementations whereby a node sends a message into a resource group. Each convergence
layer can then forward the message according to its means.

If a receiving node receives the same message via multiple convergence layer protocols, it must
discard duplicates of the message and process them only once.

If nodes A and B communicate via one convergence layer protocol, and nodes B and C via
another, incompatible one, this does not pose a problem. What counts are that messages --
intents, data, etc. -- are forwarded, not that all nodes communicate in the same way.

2.4.5. Pivot Point

Due to the exchangable convergence layer protocols, we have a narrow waist in the architecture
that is different from e.g. the Internet architecture, where the narrow waist is IP packets.

Downwards, towards the convergence layer, the narrow waist consists of the messages in a
compatible protocol. Upwards, towards the user, the narrow waist consists of a self-contained,
shared resource. The architecture does not place any constraints on the data embedded in the
resource (with the exception of meta information discussed in this document).

It is likely necessary to acknowledge this dual layer narrow waist. That said, the leading
abstraction is the self-contained resource. It is feasible that several competing messaging
protocols exist that conform to this architecture.

2.4.6. Multiple Contributors

The notion that multiple parties can contribute to a single resource is unusual, and derives from
group communications as the primary mode of communications. But it is also what makes this
architecture effective at modelling real life user-to-user interactions.

This has some implications on how to model a self-contained resource, but this architecture
should not be prescriptive of the means, only the effect.

In particular, it implies that updates to the resource should likely be structured in such a way
that updates by multiple contributors do not conflict with each other. One set of methods for this
are conflict-free replicated data types (an overview can e.g. be found in [CRDT)).

But just because the existence of multiple contributors is explicitly acknowledged and
considered, this does not imply that every application of this architecture must in fact provide
for multiple contributors. A single contributor/creator is equally supported. In such a scenario, a
resource payload may also consist of a simple file of well-established type, etc.

Finkhaeuser Informational Page 21



Interpeer January 2026

2.4.7. Self-Contained Resources

This document stresses that resources must be self-contained, but it should hopefully be
apparent at this point that this relates to not introducing dependencies on other users or nodes.
It is perfectly fine for a resource to refer to other resources, e.g. in the same way that a hyperlink
in an HTML document does.

On the other hand, it is equally possible for a resource to contain several multiplexed data
streams, as is e.g. the case for most video file formats.

2.5. Analysis

With the elements, interactions and notes elaborated, we can now analyse whether this
architecture induces all of the desired properties, and we must conclude that it does.

Note, however, that in the final sections of [[INTERPEER-REQUIREMENTS], we conclude that some
properties are not particularly desirable after all.

In particular, we must note that REST's Visibility property is somewhat incompatible with the
HRPC properties. In particular, while the architecture does provide for some theoretical visibility
into aspects of custodianship management, end-to-end encrypted resource payloads mean that
the type of visibility that REST provides is not possible. But we must end-to-end encrypt in order
to guarantee the HRPC properties.

We must, therefore, discard Visibility as a desired property. We similarly discard Portability in
that it is a property best relegated to a higher layer. It may be feasible to design a portable
application architecture which utilizes this current architecture as its transport, however.

Finally, we also discard the Network Performance property, largely because it is better described
in other properties still included in the consideration.

User-Perceived Performance: Similar to the above, the choice of convergence layer may satisfy
this property. That said, the architecture explicitly encourages
caching of data, as well as custodians. In this manner, nodes are free to select the lowest
latency data cache available to them, which may be local.

Network Efficiency: See the use of caches above.

Scalability: Scalability is induced in multiple ways: - In much the same
way as REST provides scalability by separating interactions around specific services, this
architecture separates interactions around specific resources. - The use of custodianship
management is chosen to make it optional (though necessary for inducing other properties).
Additionally, it is designed so that not every node needs to be aware of every custodian and
vice versa.

Finkhaeuser Informational Page 22



Interpeer January 2026

Simplicity: The amount of elements and interactions is deliberately kept low. Complication is
introduced by the interdepencence of the messaging layer with the convergence layers, but
this is necessary complication in order to induce other properties. All things considered, the
architecture is simple enough.

Evolvability: The architecture establishes interaction patterns and some requirements on
individual elements, but does not perscribe how these requirements are fulfilled. It thus
provides evolvability of the system.

Extensibility: The architecture defines a minimum set of different roles and interactions, but
does not limit extensions. Once group messaging is implemented, additional messages can be
added to permit extensions, different groups from the one(s) described can be created, etc.

Customizability: The client does not so much initiate server behaviour as it negotiates its intent
with the intent recorded in the resource. The server should chose to respond such that both
intents are satisified.

Reusability: Components are re-usable in the same sense as REST. The caches provide a uniform
interface, and could so also be implemented as proxies. This implies the inclusion of a user
agent-like component, which may then communiacte with downstream caches.

Resilience: Asin REST, the architecture provides resilience against failure of components not
involved in a particular resource's group. Unlike REST, the custodianship transfer mechanism
provides additional resilience against failures of all but one custodian and all caches.

High Intermittency Tolerance: The custodianship transfer mechanism as well as the
requirement that resources are self-contained provides for high
intermittency tolerance.

Low Intermittency Utilization: The selection of convergence layer protocols based on consumer
and creator intents permits for effective utilization of low
intermittent connections.

High Latency Tolerance: Treating resources as self-contained and mutable effectively
introduces a high tolerance for latency, in that a resource is always
"complete". Whether the current node has all the parts that other nodes have does not affect
this notion of completeness.

Low Latency Support: ((low latency support)) Where low latency convergence layer protocols
are available, they can be utilized, supporting applications with low latency requirements.

Low Reliability Tolerance: Tolerance for low reliability is provided in - Not assuming a 1:1
relationship between a node and a resource, i.e. allowing for
fallbacks, - allowing for multiple convergence layer protocols that may or may not provide a
measure of reliability, and - encoding protocol logic independent of convergence layer, and
authorization logic idependent of the protocol layer, such that failures in one do not need to
affect the other.

Finkhaeuser Informational Page 23



Interpeer January 2026

High Reliability Support: Support for high reliability is provided via explicit custodianship
management and the base group communications.

High Throughput Support: Much as with latency, high throughput convergence layers can be
chosen according to the needs of the consumer and the intent of the
creator.

Inconsequential Throughput Tolerance: (((inconsequential throughput)) Similar to reliability,
high throughput is not a necessary choice. The architecture does not require high throughput
in its design, and so permits for implementations to schedule low throughput resource
streams.

Integrity: The requirement of resources to be signed by contributors provides integrity.
Authenticity: The signature above also provides authenticity.

Confidentiality: Cryptographic confidentiality is provided by end-to-end encryption of
resources. Other meanings of confidentiality are supported, in that resource creation and
contribution are, at the abstraction of the architecture and protocols implementing it,
conscious user choices. Applications MUST NOT implicitly share resources for this property to
be maintained.

Security: Where appropriate for an architecture document, [BCP72] is followed.
Implementations MUST ensure further compliance themselves.

Privacy: The considerations of [RFC6973], Section 7 are reflected to the best an architecture
document can.

Anonymity: Anonymity is provided by making user identifiers for consumption relatively
irrelevant; contributors are identified. However, each identifier can be ephemeral and limited
to (a subset of) a resource.

Pseudonymity: User identifiers are fully pseudonymous.
Unlinkability: Ephemeral user identifiers provide unlinkability.

Censorship resistance: The architecture utilizes caches and custodians in order to ensure that a
resource can exist in multiple places, making censorship resistance
difficult here. Furthermore, ephemeral user identifiers make it difficult to censor individual
people.

Accessibility: Many accessibility concerns are outside of the scope of an architecture. However,
as the architecture places no constraints on resources or identifiers that make them
particularly inaccessible, we can consider this property fulfilled.

Finkhaeuser Informational Page 24


https://rfc-editor.org/rfc/rfc6973#section-7

Interpeer January 2026

One note should be made about identifiers that are hashes of something, such as e.g. user
identifiers. A hash is not a particularly accessible datum. However, this architecture does not
require that such data are visible to the user at all -- a hash may be an identifier in the
protocols, but may be represented by a human readable and screen reader friendly string in
the user interface, for example.

Mobility: The distinction between node identifiers and convergence layer addresses provides
for mobility.

Multi-Homing: The same distinction permits for multi-homed nodes.

Self-Determination: Nodes are free to select how they communicate; they can
reject data or interests from other nodes as dictated by
local policy.

Self-determination is also guaranteed at the user layer, with some caveats. In particular, the
model of resource ownership by the creator implies that contributors cannot force their way
into contributing to a resource; in that sense, their self-determination is limited. But they are
not equally limited when it comes to resources they create themselves.

Interest Grouping: The definition of group communications along the shared interest in a
resource directly supports interest grouping.

As the above list demonstrates, this architecture incudes all of the properties defined as desirable
based on the problem section, with the exception of the visbility property from REST.

The key points that make this architecture distinct from previous attempts and contributes to
these results are:

1. The architecture is focused on user-to-user interactions, which are group efforts. Endpoint-
to-endpoint interactions are described, but in the service of the above.

2. The architecture pivots around the notion of a group resource, which members can
contribute to and/or consume.

3. The inclusion of user-to-user interaction implies the existence of user identifiers, which
provide the hooks for making such resources end-to-end encrypted by default.

3. IANA Considerations

This document has no IANA actions.

4. References

4.1. Normative References

[INTERPEER-ARCHITECTURE]

Finkhaeuser Informational Page 25



Interpeer January 2026

Finkhaeuser, J., "Architecture for Human-Centric Networking", PIE
PIE.f92f09.architecture-00, 19 January 2026, <https://specs.interpeer.org/
PIE.f92f09.architecture/PIE.f92f09.architecture-00>.

[INTERPEER-PROBLEM-STATEMENT] Finkhaeuser, J., "Problem Statement & Gap Analysis for
Human-Centric Networking", PIE PIE.f92f09.problem-statement-00, 22 July 2025,
<https://specs.interpeer.org/PIE.f92f09.problem-statement/PIE.f92f09.problem-
statement-00>.

[INTERPEER-REQUIREMENTS] Finkhaeuser, J., "Gap Analysis & Requirements for Human-
Centric Networking", PIE PIE.f92f09.gap-analysis-00, 19 January 2026, <https://
specs.interpeer.org/PIE.f92f09.gap-analysis/PIE.f92f09.gap-analysis-00>.

[PIE.f92£09.00] Finkhaeuser, ., "PIEs - Proposals for Interpeer Enhancement"”, PIE
PIE.f92£09.00-00, 14 March 2025, <https://specs.interpeer.org/PIE.f92f09.00/
PIE.f92f09.00-00>.

4.2. Informative References

[BCP72] Best Current Practice 72, <https://www.rfc-editor.org/info/bcp72>.
At the time of writing, this BCP comprises the following:

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security
Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, <https://
www.rfc-editor.org/info/rfc3552>.

Gont, F. and I. Arce, "Security Considerations for Transient Numeric Identifiers
Employed in Network Protocols", BCP 72, RFC 9416, DOI 10.17487/RFC9416, July
2023, <https://www.rfc-editor.org/info/rfc9416>.

[CRDT] Preguica, N., "Conflict-free Replicated Data Types: An Overview", arXiv, DOI
10.48550/ARX1V.1806.10254, 2018, <https://doi.org/10.48550/ARXIV.1806.10254>.

[I-D.draft-trossen-rtgwg-rosa-arch] Trossen, D., Contreras, L. M., Finkh&user, J., and P. Mendes,
"Architecture for Routing on Service Addresses", Work in Progress, Internet-
Draft, draft-trossen-rtgwg-rosa-arch-01, 9 July 2023, <https://datatracker.ietf.org/
doc/html/draft-trossen-rtgwg-rosa-arch-01>.

[ISOC-FOUNDATION] Internet Society Foundation, "Internet Society Foundation", n.d., <https://
www.isocfoundation.org/>.

[KADEMLIA] Maymounkov, P. and D. Maziéres, "Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric", Springer Berlin Heidelberg, Lecture Notes in
Computer Science pp. 53-65, DOI 10.1007/3-540-45748-8_5, ISBN
['9783540441793", "9783540457480"], 2002, <https://doi.org/
10.1007/3-540-45748-8_5>.

[NGI-Assure] PNO Digital Srl, "NGI Assure", DOI 10.3030/957073, Grant Agreement ID 957073,
31 August 2024, <https://doi.org/10.3030/957073>.

Finkhaeuser Informational Page 26


https://specs.interpeer.org/PIE.f92f09.architecture/PIE.f92f09.architecture-00
https://specs.interpeer.org/PIE.f92f09.architecture/PIE.f92f09.architecture-00
https://specs.interpeer.org/PIE.f92f09.problem-statement/PIE.f92f09.problem-statement-00
https://specs.interpeer.org/PIE.f92f09.problem-statement/PIE.f92f09.problem-statement-00
https://specs.interpeer.org/PIE.f92f09.gap-analysis/PIE.f92f09.gap-analysis-00
https://specs.interpeer.org/PIE.f92f09.gap-analysis/PIE.f92f09.gap-analysis-00
https://specs.interpeer.org/PIE.f92f09.00/PIE.f92f09.00-00
https://specs.interpeer.org/PIE.f92f09.00/PIE.f92f09.00-00
https://www.rfc-editor.org/info/bcp72
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc9416
https://doi.org/10.48550/ARXIV.1806.10254
https://datatracker.ietf.org/doc/html/draft-trossen-rtgwg-rosa-arch-01
https://datatracker.ietf.org/doc/html/draft-trossen-rtgwg-rosa-arch-01
https://www.isocfoundation.org/
https://www.isocfoundation.org/
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.3030/957073

Interpeer January 2026

[NGIO-Discovery] Stichting NLNet, "NGI Zero Discovery", DOI 10.3030/825322, Grant Agreement
ID 825322, 1 November 2018, <https://doi.org/10.3030/825322>.

[NIST.FIPS.186-4] '"Digital signature standard (DSS)", National Institute of Standards and
Technology (U.S.), DOI 10.6028/nist.fips.186-4, 2013, <https://doi.org/10.6028/
nist.fips.186-4>.

[RFC1035] Mockapetris, P, "Domain names - implementation and specification”, STD 13,
RFC 1035, DOI 10.17487/RFC1035, November 1987, <https://www.rfc-editor.org/
rfc/rfc1035>.

[RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., Morris, J., Hansen, M., and R.
Smith, "Privacy Considerations for Internet Protocols", RFC 6973, DOI 10.17487/
RFC6973, July 2013, <https://www.rfc-editor.org/rfc/rfc6973>.

[RFC7343] Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay Routable Cryptographic
Hash Identifiers Version 2 (ORCHIDv2)", RFC 7343, DOI 10.17487/RFC7343,
September 2014, <https://www.rfc-editor.org/rfc/rfc7343>.

[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm
(EdDSA)", RFC 8032, DOI 10.17487/RFC8032, January 2017, <https://www.rfc-
editor.org/rfc/rfc8032>.

[RFC8410] Josefsson, S. and J. Schaad, "Algorithm Identifiers for Ed25519, Ed448, X25519,
and X448 for Use in the Internet X.509 Public Key Infrastructure", RFC 8410, DOI
10.17487/RFC8410, August 2018, <https://www.rfc-editor.org/rfc/rfc8410>.

Acknowledgments

Development of this document started as work undertaken under a grant agreement with the
Internet Society Foundation [ISOC-FOUNDATION], but has since seen a number of revisions.
Some revisions are inspired by work undertaken under grant agreements from Horizon Europe,
specifically [NGIO-Discovery] and [NGI-Assure].

Copyright Notice

Copyright (C) the document authors.
This work is licensed under a CreativeCommons Attribution-ShareAlike 4.0 International

License.

Index

ACEHILMNPRSU
A

accessibility Section 2.5

Finkhaeuser Informational Page 27


https://doi.org/10.3030/825322
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc6973
https://www.rfc-editor.org/rfc/rfc7343
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8410
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Interpeer January 2026

anonymity Section 2.5
authenticity Section 2.5

cache Section 2.2.3.1, Paragraph 2

censorship resistance Section 2.5

confidentiality Section 2.5

contributor Section 2.2.1.3, Paragraph 1
convergence layer Section 2.2.3, Paragraph 1
convergence protocol Section 2.2.3, Paragraph 1
creator Section 2.2.1.1, Paragraph 1

custodian Section 2.2.3.1, Paragraph 1
customizability Section 2.5

evolvability Section 2.5
extensibility Section 2.5

high intermittency tolerance Section 2.5
high latency tolerance Section 2.5

high reliability support Section 2.5

high throughput support Section 2.5

integrity Section 2.5
interest grouping Section 2.5

low intermittency utilization Section 2.5
low reliability tolerance Section 2.5

mobility Section 2.5
multi-homing Section 2.5

network efficiency Section 2.5
node Section 2.2.3, Paragraph 1

privacy Section 2.5

Finkhaeuser Informational Page 28



Interpeer January 2026

pseudonymity Section 2.5

resilience Section 2.5
resource Section 2.2.2, Paragraph 1
reusability Section 2.5

scalability Section 2.5
security Section 2.5
self-determination Section 2.5
simplicity Section 2.5

unlinkability Section 2.5
user-perceived performance Section 2.5

Author's Address

Jens Finkhauser

Interpeer gUG (haftungsbeschraenkt)
Email: ietf@interpeer.org

URI: https://interpeer.org/

Finkhaeuser Informational Page 29


mailto:ietf@interpeer.org
https://interpeer.org/

	Architecture for Human-Centric Networking
	Abstract
	About This Document
	Table of Contents
	1. Introduction
	2. Architecture
	2.1. Desirable Properties
	2.1.1. Performance
	2.1.2. Avoidance of Single Points of Failure
	2.1.3. Unlinkability
	2.1.4. Quality of Service
	2.1.5. Functional Layering

	2.2. Elements
	2.2.1. Users/Humans
	2.2.1.1. Creators
	2.2.1.2. Consumers
	2.2.1.3. Contributors

	2.2.2. Resources
	2.2.2.1. Resource Permance

	2.2.3. Nodes & Convergence
	2.2.3.1. Custodians vs. Caches


	2.3. Interactions
	2.3.1. Resource Creation
	2.3.2. Resource Consumption
	2.3.3. Data
	2.3.4. Custodianship Provision
	2.3.5. Custodianship Offers
	2.3.6. Custodianship Removal
	2.3.7. Data Removal

	2.4. Notes
	2.4.1. Performance
	2.4.2. Intermittency
	2.4.3. Resources and Chunks
	2.4.4. Multiple Convergence Layer Protocols
	2.4.5. Pivot Point
	2.4.6. Multiple Contributors
	2.4.7. Self-Contained Resources

	2.5. Analysis

	3. IANA Considerations
	4. References
	4.1. Normative References
	4.2. Informative References

	Acknowledgments
	Copyright Notice
	Index
	Author's Address


