
CAProck Compact Wire Encoding

Abstract
 is a distributed authorization scheme based on cryptographic capabilities (

). This document describes a compact wire encoding for
CAProck capabilities, suitable for 0-RTT transmission.

Status of This Memo
Drafts are working documents of the Interpeer Project. The list of current Drafts is at

. Drafts may be updated, replaced, or obsoleted by other documents at any
time. It is inadvisable to use Drafts as reference material or to cite them other than as "work in
progress."

Copyright Notice
Copyright (c) Interpeer gUG and the persons identified as the document authors. This document
is licensed under CC BY-SA 4.0.

Workgroup:
Published:
Author:

Interpeer Project
14 July 2023
J. Finkhaeuser
Interpeer

[CAPROCK] [I-D.draft-
jfinkhaeuser-caps-for-distributed-auth]

About This Document
This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at
.

Discussion of this document takes place on the Interpeer mailing list interpeer@lists.interpeer.io,
which is archived at . Subscribe at

.

Source for this draft and an issue tracker can be found at .

The RFC Editor will remove this note

https://specs.interpeer.org/draft-jfinkhaeuser-
caprock-enc-compact/

https://lists.interpeer.io/pipermail/interpeer/ https://
lists.interpeer.io/mailman/listinfo/interpeer

https://codeberg.org/interpeer/specs

https://
specs.interpeer.org/

Finkhaeuser Informational Page 1

https://specs.interpeer.org/draft-jfinkhaeuser-caprock-enc-compact/
https://specs.interpeer.org/draft-jfinkhaeuser-caprock-enc-compact/
mailto:interpeer@lists.interpeer.io
https://lists.interpeer.io/pipermail/interpeer/
https://lists.interpeer.io/mailman/listinfo/interpeer
https://lists.interpeer.io/mailman/listinfo/interpeer
https://codeberg.org/interpeer/specs
https://specs.interpeer.org/
https://specs.interpeer.org/
https://creativecommons.org/licenses/by-sa/4.0/

Table of Contents
1. Introduction

2. Conventions and Definitions

3. CAProck Compact Wire Encoding

3.1. Self-Describing Binary Format

3.1.1. Alternative Encoding Approaches

3.1.2. Version Compatibility

3.2. Token Layout

3.3. Token Fields

3.3.1. Token Header

3.3.2. Token Type

3.3.3. Identifiers

3.3.4. Issuer Identifier

3.3.5. Sequence Number

3.3.6. Scope

3.3.7. Claims

3.3.8. Signature

3.3.9. Tag Values

4. Referenced Encodings

4.1. Variable-Length Integer fields (ULEB128)

4.2. TAI64 Labels

5. Related Considerations

5.1. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Scheme for Tag Values

Acknowledgments

3

3

3

4

4

4

5

7

8

9

9

11

11

11

13

14

14

16

16

16

16

17

17

17

17

18

22

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 2

Author's Address 22

1. Introduction
This document describes a compact, self-describing wire format for tokens. In this
context, compact means "small enough", specifically to fit into a 0-RTT handshake.

0-RTT handshakes aim to cut down on initial overhead. But in datagram oriented protocols,
handshakes in which each peer may send more than a single datagram suffer from additional
issues: what if a single of these datagrams does not arrive?

Mitigation techniques against this are widely employed and resemble stream oriented protocols,
but all serve to increase the protocol complexity, and thus risk inviting more issues.

This encoding is chosen to be small enough to instead ensure that a capability token can be
transmitted in a 0-RTT message.

[CAPROCK]

2. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

In order to respect inclusive language guidelines from and
, this document uses plural pronouns.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[NIST.IR.8366] [I-D.draft-knodel-
terminology-10]

3. CAProck Compact Wire Encoding
While the use-case of this encoding is for 0-RTT transmission, it may be re-used in any scenario
with similar size constraints.

Simply stating the encoding should result in a size "small enough for 0-RTT does not define this
target size very well. Consider also that IP fragmentation stall handshakes if individual
fragments take longer to deliver than others.

The 0-RTT goal, then, should be understood as making an encoded capability token small enough
to be transmitted in a single packet fitting into a single data link frame along the entire path from
source to destination.

Being a network of networks, it is impossible to guarantee this for all data link types. For
example, using , a payload may need to be as small as 51 octets, which is unlikely to
contain multiple digests and a cryptographic signature without aggressive truncation. Here, of
course, using approaches like may help (see e.g.).

[LoRaWAN]

[SCHC] [SCHC-LORA]

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 3

SCHC then provides for a reasonable bound: an SCHC window is 630 octets, while most home
internet equipment such as based on wired or wireless IEEE 802 standards typically provides for
larger transmissions.

For the purposes of this document, "small enough" then means fitting comfortably (i.e. with room
to spare) into a SCHC window.

3.1. Self-Describing Binary Format
To fulfil the space requirements above, we choose a self-describing binary format. Self-describing
formats balance space savings with having an upgrade path.

Each field in the format we choose is prefixed with a field type; for fixed sized fields, this
immediately tells a parser where to expect the next value. Variable sized fields require an
additional length prefix.

In small encodings such as the one in this document, the field type can usually fit into a single
octet, wasting very little space over the raw field data. At the same time, adding new field types
in updated specifications is a relatively painless endeavour.

3.1.1. Alternative Encoding Approaches

Alternative encodings abound, but a quick comparison against the common and
encodings is warranted as stand-ins for similar classes of encodings.

ASN.1 is a telecommunications standard for wire encoding of arbitrary data. It works by
prefixing data with a type identifier, that provides sufficient information to a parser to extract
the encapsulated data and advance to the next field. However, ASN.1 does not encode any field
semantics. Therefore, the order of fields in an ASN.1 encoding is of paramount importance, as
semantics can only be represented by a specific field order.

To work around this, ASN.1 often encodes tuples of data, where the first entry specifies an
application defined type for the second. In this manner, flexibility is restored. However, to do this,
ASN.1 needs to encode the fact that a tuple is present, an ASN.1 data type for each tuple field, etc.

By contrast, JSON essentially always encodes semantics. In a JSON object, both field names and
field values are encoded. JSON is intended to be very generic, so this approach makes sense. As
names are strings, however, they consume a lot of unnecessary space when the number of
possible fields is strictly limited, as in the case of encoding CAProck tokens.

A self-describing format therefore combines benefits from both approaches to encoding: as
semantics typically imply a data type, the most compact encoding possible is achieved, while
retaining some flexibility for extensions.

[ASN.1] [JSON]

3.1.2. Version Compatibility

A downside of using a self-describing binary format is that while the format can encode
extenions quite well, decoding them requires knowlege of which specific extensions might be
used.

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 4

Versioning field formats helps retain backward compatibility in these scenarios. However,
forward compatibility is a goal that is sacrificed in the pursuit of compactness, as it can only be
maintained by taking an approach closer to that of ASN.1. For encodings that retain forward
compatibility, consider approaches such as taken by ASN.1 or JSON.

3.2. Token Layout
In order to achieve optimal compactness, the encoding in this document makes the simplifying
assumption that a specific version of a specific field type has a fixed layout. Therefore, tags in the
encoding often indicate both the semantics as well as the data type of the field following it. This
rule is not strictly adhered to, however, such as when there is a choice of different data types for
the same field.

Field tags are often variable length integer fields (see Section 4.1), but in some cases, single octets
are used instead when a large amount of variation is not expected.

Because some fields have variable sizes, the layout below is approximate and mostly describes
the relative position of fields to each other.

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 5

Figure 1: Token Memory Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Token Header Token Type

Issuer ID

Sequence Number

Scope

Claims

Signature

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 6

Token Header:

Token Type:

Issuer ID:

Sequence Number:

Scope:

Claims:

Signature:

The token header indicates the that the following octets are a CAProck token,
and specifies the remainder of the memory layout. This document only provides a version 1
layout. See Section 3.3.1.

This field specifies the type of token, i.e. whether the token grants or revokes
privileges specified in the claims. See Section 3.3.2.

In the version 1 layout, the field that follows identifiers the token issuer. See Section
3.3.3.

The sequence number for ordering tokens follows. See Section 3.3.5.

Following the above, the scope specifies the time period for which the token is valid, as
well as related flags. See Section 3.3.6.

The claims encoded in this token follow. See Section 3.3.7.

The token ends with a cryptographic signature over the entire preceding contents,
created with a private key associated with the issuer ID. See Section 3.3.8.

The following section provides details on each field.

Note that of the above fields starts with a field tag. That means that, in principle, fields can be re-
ordered within the token. However, the token header always be serialized first. Similarly,
the signature always be the last field.

Implementations always produce the above order, while parsers accept other field
orders.

MUST
MUST

SHOULD MAY

3.3. Token Fields
Token fields are prefixed by a tag that specifies the field type. The tag is encoded as a ULEB128
variable sized unsigned integer. For details on the encoding, see Section 4.1. All types in this
document fit into 7 bits, so occupy a single octet in the encoding.

Implementations implement ULEB128 already. If they do not, they only use the 7
least significant bits of the field tag octet, and produce errors if the most significant bit is set.

If the field type is for a fixed sized field, the size is implied and can be listed in this document.
The layout of a fixed sized field is as follows. Of course, the actual data size here is an example
only.

SHOULD MUST

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 7

Variable sized fields have a ULEB128 encoded size preceeding the data (see Section 4.1). This
permits a value of size of less than 127 to be encoded in a single octet, and should represent the
most common case. Nonetheless, larger sizes are permitted. Implementations ensure to
never except values larger than 2^16, however, as that is the maximum token size.

Figure 2: Fixed Sized Field Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Tag Data

MUST

Figure 3: Variable Sized Field Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Tag Size

Data

3.3.1. Token Header

The token header field is the token tag, followed by a token size. The size is a two octet integer in
network byte order (big endian). It specifies the size of the token, in octets, from the beginning of
the token header until the end of the signature.

The token tag and size together should give readers an understanding whether the token can be
processed or must be skipped, and if skipped, by how much to skip. Subsequent revisions of this
document not modify the token header, except to update the token tag value.

The token tag value also determines which fields to expect, as listed in Section 3.2.

The tag name for this field is TAG_TOKEN; see Section 3.3.9 for values.

SHOULD

Figure 4: Token Header Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Token Tag Token Size

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 8

The initial token tag and size are probably not sufficient for scanning a data stream
for token boundaries. But given the size, at minimum a token can be processed or
skipped as a whole. This is also why this size is not in ULEB128 encoding, like most
others in this document. Readers should be able to get an indication of a token's size
with minimal effort.

3.3.2. Token Type

The token type field specifies whether the token grants or revokes privileges listed in the claims.
Following the tag is a single octet for the type value.

The tag name for this field is TAG_TOKEN_TYPE; see Section 3.3.9 for values.

The "grant" and "revoke" types as specified in are mapped into numeric values as
below.

Type Name Decimal Hexadecimal

Grant 0 0x00

Revoke 1 0x01

Table 1: Token Type Values

Figure 5: Token Type Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Token Type Tag Token Type

[CAPROCK]

3.3.3. Identifiers

 defines identifiers for the issuer and subject as derived from public keys. The
identifier scheme results in identifier sizes ranging from 28 to 64 octets (224 to 512 bits), but only
a limited number of sizes are feasible. The document further defines that object identifiers
should have the same size, though the semantics are application defined.

Technically, this makes identifiers variable sized fields, but the number of possible sizes is very
limited. Encoding the sub-type of identifier that also specifies the size is useful after parsing, and
takes the same amount of space or less than encoding the actual identifier size.

In addition to this sub-type, identifiers have a purpose, i.e. they identify issuer, subject or object.
This purpose must be encoded as well. We therefore distinguish between the identifier tag,
which encodes the purpose, and the identifier type tag, which encodes the format.

[CAPROCK]

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 9

Due to the size limits and digest types defined in , as well as the wildcard identifier
and the fact that object identifiers are optional, there are a number of tag names that can apply
to identifier fields. The full list and their values can be found in Section 3.3.9; below are the token
names only:

Identifier Type Tag Name

TAG_ID_NONE

TAG_ID_WILDCARD

TAG_ID_RAW_32

TAG_ID_RAW_57

TAG_ID_SHA3_28

TAG_ID_SHA3_32

TAG_ID_SHA3_48

TAG_ID_SHA3_64

Table 2: Identifier Type Tag Names

The first two tag names are special. TAG_ID_NONE describes that the identifier is absent. This is
only valid for object identifiers.

By contrast, TAG_ID_WILDCARD specifies that the identifier is a wildcard identifier as defined in
. This value is not valid for issuer identifiers. For both types of identifiers, the data

size is zero octets - no data may follow.

The other tags describe the size of the identifier data.

By contrast, the identifier tag may be one of the following names:

Figure 6: Identifier Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Identifier Tag Identifier Typ.

Data

[CAPROCK]

[CAPROCK]

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 10

Identifier Tag Name Details

TAG_ISSUER_ID Section 3.3.4

TAG_CLAIM_SUBJECT Section 3.3.7.1

TAG_CLAIM_OBJECT Section 3.3.7.3

Table 3

3.3.4. Issuer Identifier

The issuer is an identifier field as described in the previous Section 3.3.3. Issuer identifers may
neither be TAG_ID_NONE nor TAG_ID_WILDCARD.

The tag name for this field is TAG_ISSUER_ID; see Section 3.3.9 for values.

3.3.5. Sequence Number

Similar to identifiers, the sequence number is technically a variable sized field, but for reasons of
compactness has its own encoding. It is a tag, followed by a ULEB128 encoded variable sized
integer (see Section 4.1).

The tag name for this field is TAG_SEQUENCE_NO; see Section 3.3.9 for values.

Figure 7: Identifier Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

SeqNo Tag SeqNo

3.3.6. Scope

The scope is a compound field, made up of subfields. These fields describe the circumstances
under which to apply the enclosed claims (Section 3.3.7). As far as is concerned, this
is a (potentially open-ended) time span, as well as a policy flag to determine how to handle
tokens outside of that time span.

The scope is prefixed by its own tag, after which follow the individual scope related fields.

The tag name for this field is TAG_SCOPE; see Section 3.3.9 for values.

[CAPROCK]

3.3.6.1. Scope From
The scope's from field consists of its tag, followed by a TAI64 label (Section 4.2):

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 11

The field must always contain a timestamp, as per the specification. Validators
reject values out of range for TAI64 as invalid.

The tag name for this field is TAG_SCOPE_FROM; see Section 3.3.9 for values.

Figure 8: Scope From Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Scope From Tag

TAI64 Label

[CAPROCK] MUST

3.3.6.2. Scope To
The scope's to field is nearly identical to the scope's from field, except that

It has a different tag value, and
it may be empty (see Section 4.2 for how that is encoded).

The tag name for this field is TAG_SCOPE_TO; see Section 3.3.9 for values.

1.
2.

3.3.6.3. Scope Expiry Policy
The scope expiry policy in specifies an issuer and a local policy, which is a number of
choices that fit comfortable into a single octet.

The scope expiry policy field therefore consists of a single octet field tag, and a single octed value.

The tag name for this field is TAG_SCOPE_EXPIRY_POLICY; see Section 3.3.9 for values.

The policy values may be extended in future documents. For now, only the two mentioned
previously are supported. Implementations produce warnings when encountering
unsupported policies, and treat tokens with such policies as invalid.

Policy Name Decimal Hexadecimal

Issuer 0 0x00

Local 1 0x01

Table 4: Scope Expiry Policy Values

[CAPROCK]

SHOULD
MUST

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 12

3.3.7. Claims

Much like the scope field, the claims field is a compound field. It contains a list of claims, each of
which contains three fields. Following the tag, a ULEB128 encoded size is encoded (see Section
4.1), providing the number of claims that follow.

The tag name for this field is TAG_CLAIMS; see Section 3.3.9 for values.

Note that the claim sizes above are for illustration purposes only. Each claim must contain
exactly one subject, one predicate and one object field. There is no additional tag preceeding
each claim; the parser has enough information with the number of claims and the required
claim fields to parse the claims field.

Figure 9: Claims Layout

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Claims Tag No Claims

Claim 0

Claim N

3.3.7.1. Claim Subject
The subject is an identifier field as described in Section 3.3.3. Subject identifiers may not be
TAG_ID_NONE, and implementations reject such claims.

The tag name for this field is TAG_CLAIM_SUBJECT; see Section 3.3.9 for values.

MUST

3.3.7.2. Claim Predicate
The predicate is a variable sized field, the contents of which are not further specified here. An
appropriate privilege scheme may encode any values here for application defined privileges.

The tag name for this field is TAG_CLAIM_PREDICATE; see Section 3.3.9 for values.

3.3.7.3. Claim Object
Identifiers for objects also follow the identifier scheme from Section 3.3.3. Note that object
identifiers may contain any value, so long as they respect the identifier size bounds.

The tag name for this field is TAG_CLAIM_OBJECT; see Section 3.3.9 for values.

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 13

3.3.8. Signature

Finally, the signature field is a cryptographic signature over the preceeding token fields, from the
first octet of the token header to the last octet before the signature field tag.

Note that specifies which cryptographic keys to accept. Some of these produce only a
single type of signature, whilst others allow a choice of digest algorithms to use. The signature
size, therefore, is dependent on the algorithm choice.

Signature Tag Name

TAG_SIG_RAW_32

TAG_SIG_RAW_57

TAG_SIG_SHA2_28

TAG_SIG_SHA2_32

TAG_SIG_SHA2_48

TAG_SIG_SHA2_64

TAG_SIG_SHA3_28

TAG_SIG_SHA3_32

TAG_SIG_SHA3_48

TAG_SIG_SHA3_64

Table 5: Signature Digest Tag Names

For the tag values, see Section 3.3.9.

[CAPROCK]

3.3.9. Tag Values

The full list of tag values is given below. There is method to the seemingly arbitrary values; for an
explanation and more complete table, see Appendix A.

Tag Name Decimal Value Hexadecimal

TAG_TOKEN 32 0x20

TAG_TOKEN_TYPE 36 0x24

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 14

Tag Name Decimal Value Hexadecimal

TAG_ISSUER_ID 40 0x28

TAG_SEQUENCE_NO 44 0x2c

TAG_SCOPE 48 0x30

TAG_SCOPE_FROM 52 0x34

TAG_SCOPE_TO 64 0x40

TAG_SCOPE_EXPIRY_POLICY 68 0x44

TAG_CLAIMS 72 0x48

TAG_CLAIM_SUBJECT 76 0x4c

TAG_CLAIM_PREDICATE 80 0x50

TAG_CLAIM_OBJECT 84 0x54

TAG_ID_NONE 8 0x08

TAG_ID_WILDCARD 12 0x0c

TAG_ID_RAW_32 5 0x05

TAG_ID_RAW_57 29 0x1d

TAG_ID_SHA3_28 3 0x03

TAG_ID_SHA3_32 7 0x07

TAG_ID_SHA3_48 23 0x17

TAG_ID_SHA3_64 39 0x27

TAG_SIG_RAW_32 69 0x45

TAG_SIG_RAW_57 93 0x5d

TAG_SIG_SHA2_28 66 0x42

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 15

Tag Name Decimal Value Hexadecimal

TAG_SIG_SHA2_32 70 0x46

TAG_SIG_SHA2_48 86 0x56

TAG_SIG_SHA2_64 102 0x66

TAG_SIG_SHA3_28 67 0x43

TAG_SIG_SHA3_32 71 0x47

TAG_SIG_SHA3_48 87 0x57

TAG_SIG_SHA3_64 103 0x67

Table 6: Tag Values

4. Referenced Encodings
A small number of encodings are defined as normative references, but may require some
additional context.

4.1. Variable-Length Integer fields (ULEB128)
The Little Endian Base 128 (LEB128) encoding has no authoritative specification. It is used in a
variety of open source projects. The earliest documented case we found is in the
standard for debugging file format used by various compilers and debugers.

We use unsigned LEB128 (ULEB128) as defined in the DWARF standard here.

[DWARF]

4.2. TAI64 Labels
TAI64 labels are a rarely used, but very simple format for encoding timestamps in a compact
fashion. The encoding is defined in . In terms of binary encoding, it is a 64 bit signed
integer in network byte order (big endian), representing seconds relative to the beginning of
1970 TAI.

TAI64 reserves values of 2^63 and larger for future use. For the purposes of this document's
encoding, we use the value of (2^64) - 1 to indicate a timestamp field without value.

[TAI64]

5. Related Considerations
This document adds no considerations related to or over the base
document.

[RFC8280] [BCP72] [CAPROCK]

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 16

5.1. IANA Considerations
This document has no IANA actions.

6. References

[BCP72]

[CAPROCK]

[DWARF]

[I-D.draft-jfinkhaeuser-caps-for-distributed-auth]

[NIST.IR.8366]

[RFC2119]

[RFC8174]

[TAI64]

6.1. Normative References

 and ,
, , , , July 2003,

.

, , ,
.

, ,
13 February 2017, .

 and ,
, ,

, 1 June 2023,
.

, , , , , , ,
, , , , and ,

,
, , April 2021,

.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

, , July 1997,
.

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/rfc/rfc3552>

Finkhaeuser, J. "CAProck Distributed Authorization Scheme" n.d. <https://
specs.interpeer.io/draft-jfinkhaeuser-caprock-auth-scheme/>

DWARF Standards Committee "DWARF Debugging Format Version 5 Standard"
<https://dwarfstd.org/Dwarf5Std.php>

Finkhäuser, J. S. P. ISEP "Capabilities
for Distributed Authorization" Work in Progress Internet-Draft, draft-
jfinkhaeuser-caps-for-distributed-auth-01 <https://
datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-01>

Miller, K. Alderman, D. Carnahan, L. Chen, L. Foti, J. Goldstein, B. Hogan, M.
Marshall, J. Reczek, K. Rioux, N. Theofanos, M. D. Wollman "Guidance for
NIST staff on using inclusive language in documentary standards" National
Institute of Standards and Technology (U.S.) DOI 10.6028/nist.ir.8366
<https://doi.org/10.6028/nist.ir.8366>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/rfc/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/rfc/
rfc8174>

Bernstein, D. J. "TAI64, TAI64N, and TAI64NA" <https://cr.yp.to/libtai/
tai64.html>

[ASN.1]

6.2. Informative References

,
,

, July 2002.

International Telephone and Telegraph Consultative Committee "Abstract
Syntax Notation One (ASN.1): Specification of basic notation" CCITT
Recommendation X.680

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 17

https://www.rfc-editor.org/rfc/rfc3552
https://www.rfc-editor.org/rfc/rfc3552
https://specs.interpeer.io/draft-jfinkhaeuser-caprock-auth-scheme/
https://specs.interpeer.io/draft-jfinkhaeuser-caprock-auth-scheme/
https://dwarfstd.org/Dwarf5Std.php
https://datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-01
https://datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-01
https://doi.org/10.6028/nist.ir.8366
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://cr.yp.to/libtai/tai64.html
https://cr.yp.to/libtai/tai64.html

[I-D.draft-knodel-terminology-10]

[ISOC-FOUNDATION]

[JSON]

[LoRaWAN]

[RFC8280]

[SCHC]

[SCHC-LORA]

 and ,
, ,

, 11 July 2022,
.

, , ,
.

, ,
, , , December 2017,

.

, , 2017,
.

 and ,
, , , October 2017,

.

, , , , and ,
,

, , April 2020,
.

, , , , and ,

, , ,
, February 2022, .

Knodel, M. N. ten Oever "Terminology, Power, and
Inclusive Language in Internet-Drafts and RFCs" Work in Progress Internet-
Draft, draft-knodel-terminology-10 <https://datatracker.ietf.org/
doc/html/draft-knodel-terminology-10>

Internet Society Foundation "Internet Society Foundation" n.d. <https://
www.isocfoundation.org/>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/rfc/rfc8259>

LoRa Alliance, Inc. "LoRaWAN™ 1.1 Specification" <https://lora-
alliance.org/resource_hub/lorawan-specification-v1-1/>

ten Oever, N. C. Cath "Research into Human Rights Protocol
Considerations" RFC 8280 DOI 10.17487/RFC8280 <https://
www.rfc-editor.org/rfc/rfc8280>

Minaburo, A. Toutain, L. Gomez, C. Barthel, D. JC. Zuniga "SCHC: Generic
Framework for Static Context Header Compression and Fragmentation" RFC
8724 DOI 10.17487/RFC8724 <https://www.rfc-editor.org/rfc/
rfc8724>

Muñoz, R. Saez Hidalgo, J. Canales, F. Dujovne, D. S. Céspedes "SCHC over
LoRaWAN Efficiency: Evaluation and Experimental Performance of Packet
Fragmentation" MDPI AG Sensors vol. 22, no. 4, pp. 1531 DOI 10.3390/
s22041531 <https://doi.org/10.3390/s22041531>

Appendix A. Scheme for Tag Values
The use of the ULEB128 encoding makes it desirable to define only tag values up to 127 (7 bits),
otherwise multiple octets may be used. At the same time, the multi-byte encoding does permit for
future extensions.

This document defines a number of tags for identifiers, which all have one of a set of specific
sizes; they're either raw public keys or digests thereof (see). Similarly, the signatures
used in this document relate to the output sizes of digests from the same algorithms.

The resulting number of permutations of digest algorithms and sizes for both types of tag, and
adding the number of additional tags, easily permits encoding in 7 bits. However, a scheme may
be desirable that permits decoders to determine the identifier/signature sizes with little
branching.

Examining the digest sizes first, we note that they fit into 7 bits. 64, the largest digest size, sets the
most significant of 7 bits. We can further note that being all sizes (except for 57) being divisible
by 4, none have the two least significant bits set.

[CAPROCK]

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 18

https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://www.isocfoundation.org/
https://www.isocfoundation.org/
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://www.rfc-editor.org/rfc/rfc8280
https://www.rfc-editor.org/rfc/rfc8280
https://www.rfc-editor.org/rfc/rfc8724
https://www.rfc-editor.org/rfc/rfc8724
https://doi.org/10.3390/s22041531

Digest Size (octets) Digest Size (binary)

28 0001 1100

32 0010 0000

48 0011 0000

57 0011 1001

64 0100 0000

Table 7: Digest Sizes

These two least significant bits can encode up to four distinct values. As luck would have it, we
have four different categories of tag to deal with: those unrelated to digest sizes, those using raw
digests, those using SHA-2 and those using SHA-3.

However, we need an additional bit to determine whether the size is used in an identifier or in a
signature. We can shift to using only 6 bits for the size by simply subtracting the lowest value, 28.
In this way, the values for the least significant bits are preserved, but we use one bit less overall.

Adjusted Size (octets) Digest Size (binary)

28 - 28 = 0 0000 0000

32 - 28 = 4 0000 0100

48 - 28 = 20 0001 0100

57 - 28 = 29 0001 1101

64 - 28 = 36 0010 0100

Table 8: Adjusted Digest Sizes

We can still use the least two signficiant bits to determine the digest type:

Category Mask (binary) Mask (decimal)

Miscellaneous 0000 0000 0

Raw 0000 0001 1

SHA-2 0000 0010 2

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 19

Category Mask (binary) Mask (decimal)

SHA-3 0000 0011 3

Table 9: Category Masks

At the same time, we can use the most significant of 7 bits as indicating whether we're dealing
with an identifier or a signature.

Digest Use Mask (binary)

Identifier 0000 0000

Signature 0100 0000

Table 10: Identifier or Signature Bit

If we apply the appropriate masks to the digest size, we can at parse time check for their
presence, remove them, add 28, and have the digest size plus whichever categories and uses the
masks revealed.

The "raw" category forms somewhat of an exception here. Using 01 as the two least significant
bits means that removing the mask, the digest size would yield 56 when 57 is expected. This
outlier case will require some kind of branch.

At the same time, we're free to use any value below 63 that has the two least significant bits unset
as miscellaneous tokens.

Tag Name Binary Value Decimal Value Hexadecimal

TAG_TOKEN 0010 0000 32 0x20

TAG_TOKEN_TYPE 0000 0000 36 0x24

TAG_ISSUER_ID 0000 0000 40 0x28

TAG_SEQUENCE_NO 0000 0000 44 0x2c

TAG_SCOPE 0000 0000 48 0x30

TAG_SCOPE_FROM 0000 0000 52 0x34

TAG_SCOPE_TO 0000 0000 64 0x40

TAG_SCOPE_EXPIRY_POLICY 0000 0000 68 0x44

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 20

Tag Name Binary Value Decimal Value Hexadecimal

TAG_CLAIMS 0000 0000 72 0x48

TAG_CLAIM_SUBJECT 0000 0000 76 0x4c

TAG_CLAIM_PREDICATE 0000 0000 80 0x50

TAG_CLAIM_OBJECT 0000 0000 84 0x54

TAG_ID_NONE 0000 1000 8 0x08

TAG_ID_WILDCARD 0000 1100 12 0x0c

TAG_ID_RAW_32 0000 0101 5 0x05

TAG_ID_RAW_57 0001 1101 29 0x1d

TAG_ID_SHA3_28 0000 0011 3 0x03

TAG_ID_SHA3_32 0000 0111 7 0x07

TAG_ID_SHA3_48 0001 0111 23 0x17

TAG_ID_SHA3_64 0010 0111 39 0x27

TAG_SIG_RAW_32 0100 0101 69 0x45

TAG_SIG_RAW_57 0101 1101 93 0x5d

TAG_SIG_SHA2_28 0100 0010 66 0x42

TAG_SIG_SHA2_32 0100 0110 70 0x46

TAG_SIG_SHA2_48 0101 0110 86 0x56

TAG_SIG_SHA2_64 0110 0110 102 0x66

TAG_SIG_SHA3_28 0100 0011 67 0x43

TAG_SIG_SHA3_32 0100 0111 71 0x47

TAG_SIG_SHA3_48 0101 0111 87 0x57

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 21

Tag Name Binary Value Decimal Value Hexadecimal

TAG_SIG_SHA3_64 0110 0111 103 0x67

Table 11: Tag Values With Binary Representation

Acknowledgments
Jens Finkhäuser's authorship of this document was performed as part of work undertaken under
a grant agreement with the Internet Society Foundation .[ISOC-FOUNDATION]

Author's Address
Jens Finkhäuser
Interpeer gUG (haftungsbeschraenkt)

ietf@interpeer.ioEmail:
https://interpeer.io/URI:

CAProck Compact Wire Encoding July 2023

Finkhaeuser Informational Page 22

mailto:ietf@interpeer.io
https://interpeer.io/

	CAProck Compact Wire Encoding
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. CAProck Compact Wire Encoding
	3.1. Self-Describing Binary Format
	3.1.1. Alternative Encoding Approaches
	3.1.2. Version Compatibility

	3.2. Token Layout
	3.3. Token Fields
	3.3.1. Token Header
	3.3.2. Token Type
	3.3.3. Identifiers
	3.3.4. Issuer Identifier
	3.3.5. Sequence Number
	3.3.6. Scope
	3.3.6.1. Scope From
	3.3.6.2. Scope To
	3.3.6.3. Scope Expiry Policy

	3.3.7. Claims
	3.3.7.1. Claim Subject
	3.3.7.2. Claim Predicate
	3.3.7.3. Claim Object

	3.3.8. Signature
	3.3.9. Tag Values

	4. Referenced Encodings
	4.1. Variable-Length Integer fields (ULEB128)
	4.2. TAI64 Labels

	5. Related Considerations
	5.1. IANA Considerations

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Scheme for Tag Values
	Acknowledgments
	Author's Address

